

Question Paper Code: 50956

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2024.

Third Semester

Electrical and Electronics Engineering

EC 3301 — ELECTRON DEVICES AND CIRCUITS

(Regulations 2021)

(Common to PTEC 3301 – Electron Devices and Circuits for B.E. (Part – Time) Second Semester — Electrical and Electronics Engineering – Regulations 2023)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

1. Determine V_0 for the network shown in Fig (1).

Fig (1)

- 2. What is the condition for Laser Action?
- 3. Define α , β and γ of the transistor and mention the relationship of the terms.
- 4. Differentiate between Enhancement and Depletion MOSFET.
- 5. Why are bypass and coupling capacitors used in amplifier circuits?
- 6. Why harmonic distortion occurs in amplifier and how can it be reduced?
- 7. State two advantages and two disadvantages of single tuned amplifiers.
- 8. What are the coupling schemes used in multistage amplifiers?

- 9. State Barkhausen criterion for sustained oscillation. What will happen to the oscillation, if the magnitude of the loop gain is greater than unity?
- 10. What is meant by positive feedback and negative feedback?

PART B —
$$(5 \times 13 = 65 \text{ marks})$$

- 11. (a) (i) With necessary diagrams explain the structure and operation of PN junction diode. (8)
 - (ii) Briefly explain about the PN junction capacitances. (5)

Or

- (b) (i) Explain the operation of Zener diode and its VI characteristics. (8)
 - (ii) Explain how Zener diode acts as a voltage regulator. (5)
- 12. (a) Explain the structure, operation and V-I characteristics of BJT.

Or

- (b) With neat diagram explain the structure, operation and V-I characteristics of UJT and IGBT.
- 13. (a) (i) Explain and derive the voltage and current gain expressions for CB configuration using hybrid models. (9)
 - (ii) Analyze and determine I_C, I_B and dc voltage at the collector of the transistor amplifier circuit shown in fig. 13. a (ii) (4)

Fig. 13. a (ii)

Or